Projective modules over smooth, affine varieties over real closed fields
نویسندگان
چکیده
منابع مشابه
Affine Nash groups over real closed fields
We prove that a semialgebraically connected affine Nash group over a real closed field R is Nash isogenous to the semialgebraically connected component of the group H(R) of R-points of some algebraic group H defined over R. In the case when R = R this result was claimed in [5], but a mistake in the proof was recently found, and the new proof we obtained has the advantage of being valid over an ...
متن کاملOn the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if W is such a variety, then every piecewise polynomial function on W can be written as suprema of infima of polynomial functions on W . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of s...
متن کاملModules over Projective Schemes
Definition 1. Let S be a graded ring, set X = ProjS and letM a graded S-module. We define a sheaf of modulesM ̃ on X as follows. For each p ∈ ProjS we have the local ring S(p) and the S(p)module M(p) (GRM,Definition 4). Let Γ(U,M ̃) be the set of all functions s : U −→ ∐p∈U M(p) with s(p) ∈M(p) for each p, which are locally fractions. That is, for every p ∈ U there is an open neighborhood p ∈ V ⊆...
متن کاملProjective Modules over Finite Groups
Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...
متن کاملProjective Modules over Dedekind Domains
In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2010
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2009.12.028